7.1
Work

When you push a car, youdo work. You do work by exerting a force on a
body while that body moves from one place to another, thatis, undergoes a
displacement.You do more work if the force is greater (you push harderon

the car) orif the displacementis greater (push the car farther).

Considerabody that undergoes a displacement of magnitude salonga

straightline. While the body moves, a constantforce F acts on it in the

same direction as the displacements.

We define the work W done by this constantforce as the productof the

force magnitude F and the displacement magnitude s:
W =Fs (1)

The work done on the body is greater if either the force F or the

displacement s is greater.

The Slunit of work is the joule (abbreviatedas J). From the above
equation we see thatin any system of units, the unit of work is the unit of

force multiplied by the unit of distance. Therefore, in Sl units

1 joule = (1 Newton) (1 meter)

1J=IN-m

In the British System the unit of force is the pound (Ib), the unit of distance
is the foot, and the unit of work is the foot-pound (ft.Ib).

1J=07376ft-1b Ift - Ib =1356]

If you push the carthrough a displacement s with a constantforce F in the
direction of motion, the amountof work you do on the caris given by

W = Fs. If you push the car at an angle ¢ with the car's displacement, only

the component of the force in the direction of the car's motion would be

effective inmoving the car.

When the force F and the displacement s have differentdirections, we take

the componentof F in the direction of the displacement s, and we define
the work as the product of this componentand the magnitude of the

displacement. The component of F in the direction of s is Fcos¢, so
W =Fscosg (2)

We are assuming thatF and ¢ are constantduring the displacement.If 4 =
0, sothatF and s are in the same direction, then cos¢=1 and we getback

the equation (1).

Equation (2) has the form of the scalarproductoftwo vectors A-B = 4Bcosg.
Using this, we can write Eq. (2) as

W=F-s (3)

Work is a scalarquantity, eventhoughitis calculated by using two vector
quantities (force and displacement). A 5-N force toward the east acting on
a bodythat moves 6 m to the east does exactlythe same work as a 5-N

force toward the north acting on a body that moves 6 m to the north.

Example

Youexerta steady force of magnitude 210 N on the stalled car as you push
it a distance of 18 m. The car also has a flat tire, so to make the car track
straightyou must push at an angle of 30° to the direction of motion. How
much work you do? Suppose you push a second stalled carwith a steady

force of F =160i—40j. The displacement of the caris s=14i+11j. How much

work you do in this case?

Solution

In each case the force is constantand displacementis along a straight line.
Case1:

W =Fscos@=210%18xcos30° =3.3x10°]
Case 2:

The componentsof F are F, =160 Nand F, =—40N. The components of s

are x=14mand v=11m. Hence,
W =Fs=Fx+F,y=160x14+(-40)x11=1.8x10J

In the example above, the work done in pushing the cars was positive.

Work can also be negative or zero. When the force has a componentin the
same direction as the displacement (¢ between zero and 907), cos¢ is

positive and the work is positive.

When the force has a componentopposite to the displacement (¢ between

907 and 180°), cos¢ is negative and the work is negative.

When the force is perpendicularto the displacement, ¢ =90° and the work

done by the force is zero.



7.2

Work of a Variable Force

We consider straight-line motion with a force that is directed along the line
butwith an x-component £ thatmay change as the body moves. For

example,imagine a train moving on a straighttrack with the throttle setting

being constantly changed.

Suppose a particle moves along the x-axis from point x to x, . The figure
below is a graph of the x-componentof the force as a function of the

particle’s coordinate x.
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Tofind the work done by this force, we divide the total displacement into

small segments Ax, Ax,, and soon.

We approximate the work done by the force during the segment Ax, asthe
average force F, inthat segmentmultiplied by the displacement Ax,. We do

this foreach segmentand then add the results for all the segments. The

work done by the force in the total displacementfrom x tox, is
approximately

I = FyAx, + A, +--

As the numberof segments becomes very large and the width of each
becomes very small, this sum becomes (in the limit) the integral of

F from xto x; -
W=["Fadx

We note that £Ax, represents the area of the first vertical strip and that the

integralrepresents the area underthe curve between x and x,.

On a graph of force as a function of position, the total work done by
the force is represented by the area underthe curve between the
initial and final positions.

An alternative interpretation is that the work W equals the average force

thatacts overthe entire displacement, multiplied by the displacement.

The above equationalso applies if £, the x-componentofforce,is

constant. In that case, £ may be taken outside the integral:
W=|"Fdx=F, dc=F(x-x)=Fs

The interpretation of work as the area underthe curve of £, as a function of

x also holds for a constantforce; 7" = Fr is the area of a rectangle of height
F and width s.

We considera stretched spring. To keep a spring stretched beyond its

unstretched length by an amount x, we have to apply a force with

magnitude Fat each end.
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If the elongation x is not too great, we find that the force we apply to the

right-hand end has an x-componentdirectly proportionalto x:

F =k

where k is a constant called the force constant(or spring constant) of the
spring. The observationthatelongation is directly proportionalto force for
elongations thatare nottoo greatwas made by RobertHooke in 1678 and

is known as Hooke's law.

To stretch a spring, we must do work. We apply equal and opposite forces
to the ends ofthe spring and gradually increase the forces. We hold the left
end stationary, so the force we apply at this end does nowork. The force at

the moving end does do work. Figure below is a graph of £, as a function

of x, the elongation of the spring.
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The work done by this force when the elongation goes fromzeroto a

"

maximum value of Xis

1

W= Fax= koudx= SHX (a)

We can also obtain this result graphically. The area of the shaded triangle
in the figure above, representing the total work done by the force, is equal

to half the productof the base and altitude,

1
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This equation also says thatthe work is the average force x/2 multiplied
by the total displacement X. We see that the total work is proportionalto
the square of the final elongation X. To stretch a spring by 2 cm, you must

do fourtimes as much work as is needed to stretch it by 1 cm.

The above equationassumesthatthe spring was originally unstretched. If

initially the spring is already stretched a distance x, the work we mustdo to

stretch it to a greaterelongation x, is

1

. , 1.,
hdx:ﬁ@‘gbﬁ' (b)

W=|"Fdc=

X

If the spring has spaces betweenthe coils when it is unstretched, then it
canalso be compressed, and Hooke’s law holds for compression as well

as stretching. In this case the force F and the displacementx are in the

opposite directions fromthose considered earlier, and so both F, and x are
negative. Since both F and x are reversed, the force againis in the same
direction as the displacement, and the work done by E, is again positive.

Sothe total work is still given by equations (a) or (b), evenwhen Xis

negative oreitheror both of x and x, are negative.

We note that the work given by equation (b) is the work that you mustdo
on a spring to change its length. For example, if you stretch a spring that's

originally relaxed, then x =0,x, =0, and 7 »0. That's becausethe force you

apply to one end of the spring is in the same direction as the displacement
and the work youdo is positive. By contrast, the work that the spring does
onwhateveritis attached to is given by the negative of equation (b). Thus,

as you pull on the spring, the spring does negative work on you.



7.3
Kinetic Energy
The total work done on a body by external forces is related to the body’s

displacement—thatis to changesinits position. The total work is also

related to changes inthe speed of the body as shown below.

—_—

The above is an example of a block sliding on a frictionless table. The
forces acting onthe block are its weightw, the normal force n, and the
force F exerted on it by the hand. In Fig. a, the net force on the block s in
the direction of its motion. From Newton’s secondlaw, this means thatthe

block speeds up; this also means that the total work 7, done on the block

is positive. The total work is also positive in Fig. b. The blockagain speeds

up. The component Fcos¢ causes the acceleration and it contributes to

bot *

The total work is negative in Fig. c becausethe net force opposesthe
displacement;in this case the block slows down. The net force is zero in
Fig.d, so the speed ofthe block stays the same and the total work done on
the block is zero. We can conclude thatwhen a particle undergoesa

>0, slows down if m

ot

displacement, it speeds up if 7, < 0, and maintains

ot

the same speedif w_, = 0.

ot

We generalize these observations. Consider a particle with mass m moving
along the x-axis underthe action of a constantnetforce with magnitude F
directed along the positive x-axis. The particle’s accelerationis constant.
Suppose the speed changes from »; to v, while the particle undergoesa

displacement s = x, - x, from point x to x, . Using constant-acceleration

equation,

-y
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F=ma =m

1 ., 1 .
P&=Emﬁ—5mﬁ

The product Fs is the work done by the netforce F and thusis equalto the

totalwork w’

bt

done by all forces acting on the particle. The quantity %mvz is
called the kinetic energy x of the particle:

K:lmf
5

s

Like work, the kinetic energy of a particle is a scalarquantity; it depends
only onthe particle’s mass and speed, notits direction of motion. A car,

viewed as a particle, has the same kinetic energy when going northat 10
m/s as when going eastat 10 m/s. Kinetic energy can neverbe negative,

and it is zero only when the particle is at rest.

The first term on the right side of the equation F5=%mv§ —%mvf is the final

kinetic energy ofthe particle, while the second termis the initial kinetic
energy. The difference between these terms is the change in kinetic
energy. Therefore, the work done by the netforce on a particle equals
the change in the particle’s kinetic energy:

H'.."

ot

=K, - K =AK
This resultis known as the work-energy theorem.

When w7, is positive; k, is greaterthan &, the kinetic energy increases,

ot

and the particle is going fasteratthe end ofthe displacementthan atthe

beginning. When w_, is negative, the kinetic energy decreases, andthe

tot

speed is less after the displacement. When w7, =0, the initial and final

" tot

kineticenergies X, and K, are the same and the speedis unchanged. ltis
importantto note that the work-energy theorem by itself tells us only about
changes in speed, notvelocity, since the kinetic energy carries no

information about the direction of motion.

The kinetic energy and work musthave the same units. Hence the joule is

the Sl unit of both work and kinetic energy.

Because we used Newton’s laws in deriving the work-energy theorem, we
canuse onlyin an inertial frame of reference. The speeds thatwe use to
compute the kinetic energies and the distance that we use to compute work

mustbe measuredin an inertial frame.

We have derived the work-energy theorem forthe special case of straight
line motion with constantforces. Inthe nextmodule, we will show that the
theoremis valid in general, even when the forces are not constantand the

particle’s trajectory is curved.



7.5

Power

The definition of work makes no reference to time, and often we needto

know how quickly the work is done. This can be described interms of

power. Poweris the time rate at which work is done. Like work and

energy, poweris a scalarquantity.

When a quantity of work A7 is done during a time interval Az, the average

work done per unittime or average power £ _is defined to be

AW
B,=
Af

We can define instantaneous powerP as the limit ofthe quotientin the

above equation as A: approaches zero:

AW dW
a—=l Af dr
i 2P
a0 Af dt

The Sl unit of poweris the watt (W). One watt equals one joule per second
(1 W=1J/s). In the British system, work is expressed in foot-pounds, and
the unit of poweris the foot-pound persecond. A larger unit called the

horsepower (hp)is also used:
1 hp = 550 ft.Ib/s = 33,000 ft.Ib/min

Thatis, a 1-hp motorrunning at full load does 33,000 ft-Ib of work every

minute. A conversion factoris
1Thp=746 W =0.746 kW

Thatis, 1 horsepowerequals about 2 of a kilowatt.

The watt is a familiarunit of electrical power; a 100-W light bulb converts

100 J of electrical energy into light and heateach second.

The units of powercan be used to define new units of work and energy.

The kilowatt-hour(kWh)is the usual commercial unit of electrical energy.
One kilowatt-houris the total work done in 1 hour (3600 s) when the power

is 1 kilowatt (10° J/s), so
1 kWh = (10° J/s) (3600s) = 36x10°T = 3.6 MJ
The kilowatt-houris a unit of work or energy, not power.

In mechanics, we can express powerin terms of force and velocity.
Suppose thata force F acts on a body while it undergoes a vector

displacement as. If £ is the componentof F tangentto the path (parallel to

As ), thenthe work done by the force is AW = FAs, and the average poweris

As
‘E_Iv —=F Ve
At

Instantaneous power Pis the limit of this expressionas Az — 0:
P=Fv

where v is the magnitude of the instantaneous velocity. We can also

express this equation in terms of the scalarproduct:

P=F-v
Example

Each ofthe two jet engines on a Boeing 767 airliner develops athrust(a
forward force on the airplane)of 197,000 N. When the airplaneis flying at

250 m/s, whathorsepowerdoes each engine develop?

Solution

The thrustis in the direction of motion, so F =197.000 N. At v=250m/s , each

engine developsthe power

P=FEv=197000%250=493x10" W

Lhp = 66.000 hp

=(493x10" W)
* 1746 W

Example

A runnerwith mass 50.0 kg runs up to the top of the 443-m-high hill. To lift
himselfto the top in 15.0 minutes, whatmust be his average poweroutput

in watts? In kilowatts? In horsepower?

Solution

We will treat the runneras a particle of mass m. Lifting a mass m against
gravity requires an amount of work equal to the weight mg multiplied by the

heighth it is lifted. Hence the work he mustdo is
W =mgh=500x980x443=217x10°]
Thetimeis 15.0min =900 s, so the average poweris

» =2.1?><105

- =241W =0241kW =03253hp
: 200

In the alternative approach, we calculate the power:

The force exerted is vertical, and the average vertical component of

velocity is 443/900=0.492m/s, so the average poweris

P, = Fv,, = (mg)v,, =(50.0)(9.80)(0.492) =241 W

Example

Whenits 75-kW (100 hp) engine is generating full power, a small single-
engine airplane with mass 700 kg gains altitude at a rate of 2.5 m/s. What
fraction of the engine poweris being used to make the airplane climb? (The
remainderis used to overcome the effects of air resistance and of

inefficienciesin the propellerand engine.)
Solution: Therate at which work is being done againstgravity is
P=Fv=(700%9.80)x(2.5)=17.15kW

This is the part ofthe engine powerthatis being used to make the airplane

climb. This, as a fraction of the total, is

1715 KW
TS5 kW

fraction = =022

Example

An elevatorhas a mass 600 kg, notincluding passengers. The elevatoris
designed to ascend, atconstantspeed, a vertical distance of 20.0 m (five
floors)in 16.0 s, and it is driven by a motor that can provide upto 40 hp to
the elevator. What is the maximum number of passengers thatcanride in

the elevator? Assume thatan average passengerhas mass 65.0 kg.

Solution: The powerthatis deliveredto elevatoris

P =(401p)x|

%,
Y

T46W

]: 2.984x10%W

If m denote the total mass lifted

_ mgh
¢

P

or

_ Pr 2984x10*x16.0

mM=—= =2436kg
gh 0.80:=20.0

This is the total mass of elevatorplus passengers. The mass of the

passengers is 2436 — 600 = 1836 kg. The number of passengers is

1836
65.0

=282

So0 28 passengers canride.

Example

A particle is acceleratedfromrestby a constantnetforce.

1. Show the instantaneous powersupplied by the net force is ma’:.

2. Totriple the acceleration atany given time, by what factormustthe
powerbe increased?

3. Att=5.0 s the powersupplied by the netforce is 36 W. What must

the powerbe at t = 15.0 s to maintain constantacceleration?

Solution:

1. F=ma v=y, tat=at

The instantaneous poweris
P=Fv=maxat=ma't

2. P is proportional to a®. Triple a implies the increase of P by a factor of
9.

3. We have the relation §=ma: =constant . | herefore,

r'l
B=R2
f1

g
=36><£=108’W
5.0



